Monitoring of the genetic health of cattle in the Czech Republic

J. Citek¹, V. Rehout¹, J. Hajkova², J. Pavkova¹

¹Department of Genetics, Animal Breeding and Nutrition, Faculty of Agriculture, University of South Bohemia, Ceske Budejovice, Czech Republic
²State Veterinary Institute, Brno, Czech Republic

ABSTRACT: A screening was carried out for CVM, BLAD, DUMPS, bovine citrullinaemia, glycogen storage disease V, and Robertsonian translocations in the cattle population of the Czech Republic. In 406 Holstein sires and 146 Czech Pied (Czech Simmental) sires entering the AI programme in the Czech Republic from 2003–2005, no heterozygous sire for DUMPS, bovine citrullinaemia and BLAD was found. The heterozygote was not found also in the beef sires of Charolais, Limousine, Beef Simmental, Blonde d’Aquitaine, Belgian Blue, Aberdeen-Angus, and Hereford breeds. In 111 elite Holstein females, 21 (18.9%) were heterozygotes for CVM, and were dominant homozygotes for BLAD, DUMPS and bovine citrullinaemia. In the myophosphorylase gene responsible for the glycogen storage disease V, in the Charolais (n = 30), Czech Pied (n = 53), and Belgian Blue, Limousine, Blonde d’Aquitaine, Aberdeen Angus, and Beef Simmental sires analysed, the heterozygote was not found. Robertsonian translocations were examined in 767 Holstein sires, 1 010 Czech Pied (Simmental) sires, 142 beef sires, and 48 dams. Of these, 10 sires of Czech Pied breed, 5 beef sires, and 13 females were found to be positive. The monitoring of BLAD, CVM, and Robertsonian translocations is recommended.

Keywords: cattle; CVM; BLAD; DUMPS; citrullinaemia; Robertsonian translocation; screening

Inherited disorders affect all species of domestic animals. They are hereditarily caused physical or functional anomalies, with a negative impact on health and productivity. It is an important task of breeders and veterinarians to eradicate these disorders, and control the genetic health of farm animals. Knowing the molecular basis of a defect, the direct detection of the heterozygous carriers is possible at the gene level after birth or even in embryos. Similarly, the detection of carriers of cytogenetic anomalies enables their exclusion from breeding and consequently, the maintenance of genetic health in the population.

In cattle, the most pressing problem in the genetics of health at present is the recessive and lethal Complex Vertebral Malformation (CVM) in the Holstein population. The defect can be traced back to the American elite sire Carlin-M Ivanhoe Bell. His father, Penstate Ivanhoe Star, born in 1963, was also found to be a carrier. Bell was formerly used extensively world wide, so the global impact on the mortality of Holstein calves is inevitable (Könersmann et al., 2003). It threatens, when a widely used elite sires producing large quantities of calves turn out, in retrospect, to have carriers of a defective gene, the inbreeding in population intensifies the process (Citek and Blahova, 2004). This defect is caused by a mutation in an autosomal recessive gene (Revell, 2001; and more information at http://www.naab-css.org/educa-
Glycogen storage disease V, also known as de

Bovine citrullinaemia is an autosomal recessive

deficiency of uridine-5'-monophosphate synthase (DUMPS) is a recessive genetic disorder. UMP synthase is necessary for the de novo synthesis of pyrimidine nucleotides. Growth and development of the homozygous recessive calves are arrested, leading to embryonic mortality around 40 days post-conception (Shanks and Robinson, 1990; Robinson et al., 1993).

Bovine citrullinaemia is an autosomal recessive error of urea metabolism as a result of a deficiency of the activity of argininosuccinate synthase (ASS). Affected (homozygous) calves are unable to excrete ammonia and display neurological symptoms that become progressively worse, leading to death within one week of birth (Grupe et al., 1996).

Glycogen storage disease V, also known as deficiency of muscle glycogen phosphorylase, or myophosphorylase, is a muscle disease induced by point mutation in the respective gene (Tsujino et al., 1996; Soethout et al., 2002). It causes exercise intolerance, myalgia and recurrent myoglobinuria. The disorder was reported first by Angelos et al. (1995) with the monogenic autosomal recessive pattern of inheritance. In humans, the defect was originally known as McArdle's disease, causing similar symptoms. Recently, Johnstone et al. (2004) have studied the occurrence of the glycogen storage disease in New Zealand.

The Robertsonian translocation is the most common cytogenetic anomaly in cattle. Among them, the 1;29 translocation is the most frequent. That is why it has been monitored for years to prevent its spread in the population, which results in an increase in embryonic mortality, and reduction in fertility (Molteni et al., 2005). The 1;29 translocation has been described by Gustavsson and Rockborn (1964), in the Czech Republic at the first by Lojda (1974). More than 40 Robertsonian translocations have been found in cattle. Rubes et al. (1996) found new translocations 16;20 in the progeny of a German Red Pied sire and a Czech Red Pied cow. They found a potential relationship between the 16;20 and 14;20 translocation and lower in vitro embryo development (Rubes et al., 1999).

The aim of this paper is to report on the monitoring of the genetic health of the cattle population in the Czech Republic. Firstly, the screening of young bulls entering artificial insemination (AI) programme was carried out, the loci of BLAD, DUMPS, bovine citrullinaemia and glycogen storage disease V were genotyped, and a definite number of elite cows were examined for CVM. Secondly, the young bulls and females were investigated for Robertsonian translocations.

MATERIAL AND METHODS

The screening for lethal recessive disorders

The genotyping of BLAD, DUMPS and bovine citrullinaemia was carried out in 582 sires of the Holstein and Czech Pied (Simmental) breeds, and also a small number of beef sires were involved. Glycogen storage disease V was tested in 98 sires of Charolais, Czech Pied (Simmental) and other beef breeds. Young sires entering the progeny testing in the Czech Republic in 2003 and 2004, and young bulls in the rearing houses were involved.

Also, BLAD, DUMPS, bovine citrullinaemia and CVM were analysed in 111 elite females too, and
the dams or potential dams of sires were included into the analysis.

DNA was isolated from whole blood or sperm. BLAD, DUMPS, bovine citrullinaemia and glycogen storage disease V were genotyped by polymerase chain reaction and restriction fragment length polymorphism (PCR/RFLP). The sequences of primers for PCR and restrictases were taken from literature. The sequences were as follows:

BLAD (Shuster et al., 1992, Tammen, 1994)
5'-GTC AGG CAG TTG CGT TCA A-3'
5'-GAG GTC ATC CAC CAT CGA GT-3'

DUMPS (Schwenger et al., 1993)
5'-GCA AAT GGC TGA AGA ACA TTC TG-3'
5'-GCT TCT AAC TGA ACT CCT CGA GT-3'

bovine citrullinaemia (Dennis et al., 1989)
5'-GTG TTC ATT GAG GAC ATC-3'
5'-CCG TGA GAC ACA TAC TTG-3'

glycogen storage disease V (Soethout et al., 2002)
5'-CCA GGA AGA CCC TCA TTC CA-3'
5'-AGG GAA ACA CAC ACA CAG-3'

For restriction analysis, the following enzymes were used: **BLAD** Taq I or Hae III (Tammen, 1994), **DUMPS** Ava I (Schwenger et al., 1993), bovine citrullinaemia Ava II (Dennis et al., 1989), glycogen storage disease V Styl (Soethout et al., 2002). Fragments were visualised on agarose gels stained with ethidium bromide. CVM was genotyped in a service done by the Laboratory of Immunogenetics of the Czech and Moravian Breeder’s Society. The mutation in SLC35A3 gene diagnostic for CVM was analysed out using the allelic specific PCR.

RESULTS AND DISCUSSION

The screening of the lethal recessive disorders

The genotyping of DUMPS and bovine citrullinaemia was carried out in 406 Holstein sires, and **BLAD** was also analysed when the status for it was still not known (Table 1). The panel consisted of 224 sires having begun in 2003 and 2004 the progeny testing for their breeding value in the Czech Republic, and of 182 young sires in rearing houses before their entry into an insemination programme. Also, 146 Czech Pied sires (Czech Simmental) were genotyped for the loci mentioned. They were young animals in rearing houses entering the AI programme, and the samples were collected from March 2003 to May 2005. The proportion of Holstein animals in the monitored panel is designedly relatively high, because the Holstein population is more often affected by genetic disorders. As there is a share of Holstein genes in the Czech Pied cattle, it is also of interest to check it for the presence of recessive alleles. Also, the sires of Charolais (**n** = 8), Limousine (**n** = 6), Beef Simmental (**n** = 2), Blonde d’Aquitaine (**n** = 3), Belgian Blue (**n** = 9), Aberdeen-Angus (**n** = 1), and Hereford (**n** = 1) cattle were genotyped.

No one heterozygous sire for DUMPS, bovine citrullinaemia and **BLAD** was found in the genotyped panel. Thus, the situation regarding these genetic disorders in the Czech cattle population seems to be good at present. It is a positive result, considering that **BLAD** used to be a serious problem in the Holstein population in the Czech Republic a few years ago (Hradil, 1994), when 65 positive sires from 377 and 4 positive cows from 61 were found. In Red Holstein, used to improve the Czech Simmental population, 34 bulls from 64 by one imported sire tested positive. Some observations was treated by a cultivating medium, glutamine, a solution of non essential amino acids, mitogenic activator phytohemagglutinin and bovine serum, and cultivated for 72 hours at 37°C. The mitose was stopped by adding 0.02% solution of colchicine, and hypotonic shock was induced by KCl to dissipate chromosomes. After fixation by a mixture of methanol and acetic acid and staining by Giemsa, the mounts were examined. At least 20 mitosis were evaluated.

The examination of Robertsonian translocations

The sires reared in the Czech Republic are examined for the occurrence of the Robertsonian translocations before their admission to breeding. Also females suspected for the translocation are examined, if they were intended to produce sires. The results of the examinations from 1996 to 2005 are reported here.

The modified method of investigation of live dividing lymphocytes from peripheral blood by Moorhead et al. (1960) was used. Heparinized blood
showed that heterozygous carriers of BLAD mutation yielded more milk in the first lactation and more milk protein than their non-carrier half-sisters (Lubieniecki et al., 1999). This could be a factor in the world-wide spread of BLAD.

Evidently, measures for eradication of BLAD in the cattle population in the Czech Republic were efficient, considering that after ten years not one positive young sire was found.

As CVM is the serious problem in the health genetics at present, since 2002 the CVM status of sires used in the AI programme in the Czech Republic must be declared, and the use of positive sires is restricted. Therefore, according to the breeders data, in the analysed group of young sires only 4 were heterozygous carriers of CV allele (CV). That is why we focused on the females. The elite Holstein cows or heifers, mothers of sires or potential mothers coming from the best stock herds in the Czech Republic were genotyped for CVM. In the panel of 111 females, 21 were found to be heterozygous carrier, with the exception of 21 Holstein females which were positive for CVM.

Further, 30 Charolais sires (Table 1) were genotyped for the glycogen storage disease V, as previous studies revealed the recessive allele only in this breed (Soethout et al., 2002; Jolly et al., 2004). In our group, the heterozygous animal was not found. Also the Czech Pied sires (n = 53), Belgian Blue (n = 6), Limousine (n = 4), Blonde d’Aquitaine (n = 3), Aberdeen Angus (n = 1), and Beef Simmental (n = 1) were genotyped for GSD V with negative results. Similarly, Bilstrom et al. (1998) analysed glycogen storage disease V in 60 Piedmontese and 34 Saler cattle as a negative control, and did not find heterozygotes. Thus, our results confirm the previous findings.

The examination of Robertsonian translocations

During the reported period 1996 – April 2005, a total of 1 967 animals have been examined, namely 1 919 sires, and 48 females (Table 2). The examined male population consisted of 767 Holstein sires,

<table>
<thead>
<tr>
<th>Breed</th>
<th>BLAD</th>
<th>DUMPS</th>
<th>bovine citrullinaemia</th>
<th>glycogen storage disease V</th>
<th>CVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sires</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holstein</td>
<td>406</td>
<td>406</td>
<td>406</td>
<td>406</td>
<td>406</td>
</tr>
<tr>
<td>Czech Pied</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>Charolais</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Limousine</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Beef Simmental</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Blonde d’Aquitaine</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Belgian Blue</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Aberdeen-Angus</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hereford</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holstein</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
</tr>
</tbody>
</table>

The frequency of heterozygotes was 18.9%, and the frequency of recessive allele in the survival animals was 9.5%. Genotyping the elite females enables to prepare the optimal mating design, and helps to improve rapidly the genetic health of the Holstein population in the Czech Republic. All the females were also genotyped for BLAD, DUMPS and bovine citrullinaemia, not one heterozygous carrier was found.

336
1,010 Czech Pied (Simmental) sires, and 142 sires of beef breeds.

In the analysed sires, 15 were found to be a carrier of the translocation, namely 10 sires of Czech Pied breed, and 5 sires of beef breeds, 1 Highland, 3 Blonde d’Aquitaine, and 1 Charolais. The relative frequency was 0.99%, and 3.52%, respectively.

This rather high frequency in beef sires is surprising, and emphasizes the importance of cytogenetic control, since the use of the non-detected carriers (both in natural service and in artificial insemination) in relatively small herds of beef cows could affect the reproduction. Similarly, the control in the Czech Pied and Holstein populations is relevant, as a carrier widely used in the AI programme could damage the herd’s fertility. Moreover, the sires with translocation transfer it to their progeny. Havrankova et al. (1987) found the 1;29 translocation in 50% of sons and 53% of daughters of heterozygous carriers. In the examined population, they did not find lower fertility, even though many authors (Dyrendahl and Gustavsson, 1979, e.g.) report its reduction by 5–10%.

Similarly, McWhir et al. (1987) stated that the translocation was inherited by 50% of offspring of the heterozygous carrier, and heterozygous male 1;29 carriers left fewer calves than karyotypically normal bulls when used in natural service. Therefore, the carriers of the Robertsonian translocation should not be used in breeding, as a half of progeny will be also carriers, and fertility could be more or less damaged. Because the Robertsonian translocations occur in many breeds, examination should be carried out on all sires in the breeding programme including those imported.

In this paper, the translocation was found in 13 females out of 48 (Table 2). The pathological karyotype had 11 Czech Pied and 2 Charolais females. The frequency of 27.08% was remarkably high, but only females suspected for the translocation due to its occurrence in the father’s karyotype were involved in the analysis. In contrast, the examination of translocation is performed routinely in all males in rearing houses before their being licensed for insemination, and that is why the frequency in males was substantially lower. The analysis of suspected elite females, and exclusion of carriers prevents the spread of translocation in the population and consequent reproduction problems as discussed.

CONCLUSIONS

Recessive inherited disorders and abnormal karyotypes in cattle have very low frequency, nevertheless, in some cases they can influence the economics of cattle breeding significantly. The massive
spread of genetic defects like CVM or BLAD in recent years was caused by the extensive use of elite sires who were latent heterozygous carriers. Artificial insemination facilitated the world-wide spread of genetic defects. Molecular genetic methods of testing enable the control of genetic health in populations.

Based on the results, the situation regarding the analysed recessive disorders of BLAD, DUMPS, bovine citrullinaemia and glycogen storage disease V, respectively, seems to be good. Nevertheless, the monitoring of BLAD in young Holstein sires is recommended, because the disorder was widespread in the Czech population in the 1990s, and long-term monitoring is necessary to ensure the eradication of the recessive allele from the population. The rigorous control of CVM status in Holstein sires entering breeding is required, as the disorder is at present a very serious problem. In special circumstances, when the breeder wants to get the sons of an exceptional sire, it is possible to service the heterozygote, but the progeny of the mating must be genotyped, and only negative young sires should be used in breeding. In such a case, it would be better to genotype embryos fathered by the heterozygous sire, and only those found negative should be used for transfer. The use of CVM carriers in the conventional AI programme in the whole population is not recommended.

Arising out of these results, the cytogenetic analysis of young sires is recommended to prevent the spread of Robertsonian translocations and future fertility damage in the cattle population. As demonstrated in this paper, the translocations occur in many breeds, therefore, all sires should be tested. In both recessive disorders and translocations, the analysis of selected elite dams could help to improve the genetic health of the population.

Acknowledgements

The authors thank Karel Hala for critical reading of the manuscript, Irina Glavach for technical assistance, and John P. McAvoy for language revision.

REFERENCES

Received: 2005–10–27
Accepted after corrections: 2006–05–18